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IMPLEMENTATION OF FIBER SUBSTRUCTURING INTO STRAIN
RATE DEPENDENT MICROMECHANICS ANALYSIS OF

POLYMER MATRIX COMPOSITES

Robert K. Goldberg
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

SUMMARY

A research program is in progress to develop strain rate dependent deformation and failure models for the
analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitu-
tive equations developed to model the polymer matrix were incorporated into a mechanics of materials based
micromechanics method. In the current work, the micromechanics method is revised such that the composite unit
cell is divided into a number of slices. Micromechanics equations are then developed for each slice, with laminate
theory applied to determine the elastic properties, effective stresses and effective inelastic strains for the unit cell.
Verification studies are conducted using two representative polymer matrix composites with a nonlinear, strain rate
dependent deformation response.  The computed results compare well to experimentally obtained values.

LIST OF SYMBOLS

Aij laminate stiffness matrix components

Af
i area of fiber portion of slice “i”

Do inelastic material constant representing maximum inelastic strain rate

df fiber diameter

e collected inelastic strain terms in solving for effective inelastic strains

hf
i thickness ratio of slice “i”

hk thickness of ply k in laminate

J2 second invariant of deviatoric stress tensor

K2 second invariant of deviatoric overstress tensor

Ndiv number of fiber slices in composite unit cell

Nf number of fiber slices in analysis cell

Nij total effective force resultant components for laminate

Nij
I components of force resultants due to inelastic strains for laminate

Nl number of plies in laminate

n inelastic material constant representing rate dependence of material

pn variable to be integrated in Runge-Kutta integration algorithm

Qij plane stress stiffness matrix components for slice in material axis system

Qijl plane stress stiffness matrix components for lamina in material axis system

Qij stiffness matrix components for lamina in structural axis system

q inelastic material constant representing hardening rate of material

Sij compliance matrix components

Sijl compliance matrix components for lamina

sij deviatoric stress components
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t current time

∆t time increment

tf thickness of fiber slice in unit cell

Vf fiber volume ratio of the composite or of the composite slice

yi y-coordinate of top of slice “i” in analysis cell

Zo material constant representing initial isotropic hardness of material

α scaling factor for shear components of K2 effective stress

β material constant used in scaling shear components of K2 effective stress

εij strain tensor components

εI
ij inelastic strain components

εo
ij midplane strain components for laminate

εe
I effective inelastic strain

εI uniaxial inelastic strain in constant strain rate tensile test

ε̇o total applied strain rate in constant strain rate uniaxial tensile test

εs
I inelastic strain at saturation in constant strain rate uniaxial tensile test

γij engineering shear strain components

γo
ij midplane engineering shear strain components for laminate

θ fiber orientation angle for each ply in laminate

Ωij internal stress component

Ω uniaxial internal stress in constant strain rate tensile test

Ωm inelastic material constant representing value of internal stress at saturation

σij stress tensor components for slice and subslice

σijl stress tensor components for lamina

σ uniaxial stress in constant strain rate tensile test

σs saturation stress in constant strain rate uniaxial tensile test

σm mean or hydrostatic stress

• quantities with dots above them represent rates with respect to time

Subscripts:

c stress and strain components for analysis cell
f fiber related material property
m matrix related material property
12 in-plane shear stress or strain components in material axis system
11,22 normal in-plane stress or strain components in material axis system
33 normal out-of-plane stress or strain components in material axis system
x,y normal in-plane stress or strain components in structural axis system
xy in-plane shear stress or strain components in structural axis systems

INTRODUCTION

NASA Glenn Research Center has an ongoing research program to investigate the feasibility of developing jet
engine fan containment systems composed of polymer matrix composite materials. To design such a system, the
ability to correctly predict the deformation and failure behavior of the composite under high rate loading conditions
is required. Specifically, the analysis method must have the ability to account for any strain rate dependence and
nonlinearities that might be present in the deformation response.
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In previous research (ref. 1), an inelastic constitutive model has been developed to predict the nonlinear, rate
dependent deformation response of ductile polymers. The equations have been implemented into a mechanics of
materials based micromechanics model to enable the prediction of the nonlinear, rate dependent deformation
response of carbon fiber reinforced polymer matrix composites. Classical lamination theory has also been imple-
mented within the composite micromechanics (ref. 2) to allow for the analysis of symmetric thin laminates subject
to in-plane loading.

In the original micromechanics, the composite unit cell was subdivided into four subcells, with one subcell
composed of fiber material and the remaining three subcells representing the matrix. Uniform stress and uniform
strain assumptions were applied to the unit cell to obtain the local and effective stress and strain values. This
approach was similar to that taken by Sun and Chen (ref. 3), Robertson and Mall (ref. 4), and Pecknold and Rahman
(ref. 5).

Several efforts have been made to develop more refined versions of this micromechanics approach. By utilizing
a unit cell with a greater number of subcells, presumably more accurate results could be obtained. Pindera and
Bednarcyk (ref. 6) developed a reformulated version of the Generalized Method of Cells (ref. 7), where the unit cell
could be divided up into an arbitrary number of subcells. Uniform stress and uniform strain assumptions were still
applied to the entire unit cell to obtain the local and effective stress and strain values. However, since the equations
for each of the subcells were coupled to the equations for all the remaining subcells, fairly large systems of equa-
tions were obtained which needed to be solved. Whitney (ref. 8) divided the unit cell into a number of slices through
the thickness. Uniform stress and uniform strain assumptions were then applied between the fiber and matrix within
each slice to obtain the effective elastic constants for each slice. Effective elastic constants for the overall composite
were then computed by averaging through the thickness. A similar approach was used by Greszczuk (ref. 9) to
obtain the effective elastic constants of a composite and the interfiber stresses. By using a slicing approach, the
equations for each slice were uncoupled, leading to smaller systems of equations. However, in these analyses the
composites were assumed to have a linear elastic, rate independent deformation response.

Mital, Murthy and Chamis (ref. 10) used a slicing approach to compute the effective elastic constants and
microstresses (fiber and matrix stresses) in ceramic matrix composites. In this work, a mechanics of materials
approach was used to compute the effective elastic constants and microstresses in each slice of the unit cell.  Lami-
nate theory was then applied to obtain the effective elastic constants for the unit cell. Laminate theory was also used
to compute the effective stresses in each slice, which was used to compute the microstresses. However, in this model
Poisson effects were neglected in the micromechanics, and the analyses again assumed linear elastic, rate indepen-
dent deformation.

In the present work, the micromechanics method developed in reference 1 is refined in order to apply the slicing
approach developed in reference 10. The unit cell is divided up into a number of slices, and uniform stress and uni-
form strain assumptions are then applied to obtain the constituent and effective stresses for each slice, along with the
effective inelastic strains for each slice. Laminate theory (ref. 2) is then applied to obtain the effective stresses, elas-
tic constants, and effective inelastic strains for the lamina. By an additional application of the laminate theory, the
effective total force resultants and force resultants due to inelastic strains for a symmetric, multilayered laminate can
be computed. By applying this revised approach, the unit cell can be refined to a much greater degree while keeping
the size of the system of equations that need to be solved relatively small.

In this paper, first a review of the inelastic constitutive model used to compute the rate dependent, inelastic
deformation response of the polymer matrix is presented. Next, the revised micromechanics equations are devel-
oped.  Additionally, the laminate theory that includes force resultants due to inelastic strains is reviewed. The nu-
merical algorithms used to compute the deformation response of the composite are discussed. Finally, verification
studies conducted using two representative polymer matrix composite systems are presented.

BACKGROUND

Polymer Constitutive Equations Overview

The Ramaswamy-Stouffer state variable constitutive equations (ref. 11), which were originally developed to
analyze the viscoplastic deformation of metals above one-half of the melting temperature, have been modified to
analyze the rate dependent, nonlinear deformation response of ductile polymers. There is some physical motivation
in utilizing constitutive equations that were developed for viscoplastic metals to analyze the deformation response of
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ductile polymers. For example, Ward (ref. 12) defined the “yield stress” in polymers identically to how researchers
(ref. 11) have defined the “saturation stress” in metals. Specifically, the respective terms are used to define the stress
level in a uniaxial tensile test where the stress-strain curve becomes flat and the inelastic strain rate equals the total
strain rate. Polymers have been modeled previously using viscoplastic equations by authors such as Valisetty and
Teply (ref. 13), Zhang and Moore (ref. 14), who modified Bodner’s viscoplastic model (ref. 15), and Bordonaro
(ref. 16), who modified Krempl’s Viscoplasticity Theory Based on Overstress (ref. 17).

In state variable constitutive equations, a single unified strain variable is defined to represent all inelastic strains
(ref. 11). Furthermore, in the state variable approach there is no defined yield stress. Inelastic strains are assumed
to be present at all values of stress, only at a very small level in the “elastic” range of deformation. State variables,
which evolve with stress and inelastic strain, are defined to represent the average effects of the deformation
mechanisms.

Several limitations and assumptions have been specified in the development of the constitutive equations. Small
strain conditions are assumed and temperature effects are neglected. The nonlinear strain recovery observed in
polymers on unloading is not simulated, and phenomena such as creep, relaxation and high cycle fatigue are not
accounted for in the equations. The equations are likely only to be valid for ductile polymers.

Polymer Flow and Evolution Equations

In the modified Ramaswamy-Stouffer model, the inelastic strain rate ε̇ij
I  is defined as a function of the

deviatoric stress sij and a tensorial internal stress state variable Ωij (defined to have the properties of a deviatoric
stress) in the form

˙ exp ( )εij
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where Do, Zo and n are material constants. The term K2 is defined as
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and represents the second invariant of the overstress tensor. The elastic components of strain are added to the inelas-
tic strain to obtain the total strain. The internal stress variable rate is defined by the equation

˙ ˙ ˙ ( )Ω Ω Ωij m ij
I

ij e
Iq q= −2
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3ε ε

where q is a material constant, Ωm is a material constant that represents the maximum value of the internal stress,
and εe

I is the effective inelastic strain, defined in the normal manner used in inelastic analysis (ref. 11). The internal
stress is assumed to be equal to zero when the material is in its virgin state.

The hydrostatic stress state has been found to have a significant effect on the yield behavior of a polymer
(ref. 18). Bordonaro (ref. 16) indicated a possible way of accounting for such effects in a state variable constitutive
model was to modify the effective stress terms. In this work, pressure dependence is included by multiplying the
shear terms in the K2 invariant in equation (2) by the correction factor

α σ
β

=






m

J2
4( )

where σm is the mean stress, J2 is the second invariant of the deviatoric stress tensor, and β is a material constant.
The material constants that need to be determined include D0, n, Z0, Ωm, q and β. The values of D0, n, Z0 and

Ωm required for equation (1) are characterized as follows. The value of D0 is currently assumed to be equal to a
value of 104 times the maximum applied strain rate, which correlates with the maximum inelastic strain rate. Equa-
tion (1) is simplified into its uniaxial form to model the results of a constant strain rate uniaxial tensile test, leading
to the following expression
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where ε̇ I is the uniaxial inelastic strain rate, σ is the uniaxial stress, and Ω is the uniaxial internal stress. The addi-
tional term of 2/√3 results from the fact that stress deviators were used and the internal stress was originally defined
as a deviatoric stress. By this definition, s11 equals (2/3)σ, and Ω11 equals (2/3)Ω.

Next, equation (5) is rearranged as follows
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and the natural logarithm of both sides of the resulting expression is taken. The values of the inelastic strain rate,
stress, and state variable Ω at saturation are substituted into the resulting expression, resulting in the following
equation
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where σs equals the saturation stress, ε̇o is the constant applied total strain rate in a constant strain rate uniaxial ten-
sile test, and the remaining terms are as defined earlier.

The required constants are determined from a set of tensile curves obtained from constant strain rate tests. Each
curve in this set is obtained at a different constant strain rate. Data pairs of the total strain rate and saturation stress
values from each curve are taken. Values for Ωm are estimated for the material, with initial estimates ranging from
50 to 75 percent of the highest saturation stress found to work well. These estimates are similar to the values used
for large-grain metals. For each strain rate, the data values are substituted into equation (7), and represent a point on
a master curve. The number of points in the master curve equal the number of strain rates at which tensile tests were
conducted. A least squares regression analysis is then performed on the master curve. As suggested by equation (7),
the slope of the best-fit line is equal to –2n. The intercept of the best-fit line is equal to 2n(ln(Zo)). The value for Ωm
is then adjusted until an optimal fit to the data is obtained.

To determine the value for q for equation (3), first the equation is converted into its uniaxial equivalent and
integrated, resulting in the following relation

Ω Ω Ω= − −m m
Iqexp( ) ( )ε 8

where Ω is once again the uniaxial value of the internal stress and εI is the uniaxial inelastic strain. The elimination
of the 2/3 term seen in equation (3) results from defining the internal stress as having the properties of a deviatoric
stress. At saturation, the value of the internal stress is assumed to approach the maximum value, resulting in the
exponential term approaching zero. Assuming that saturation occurs when the following condition is satisfied

exp( ) . ( )− =q s
Iε 0 01 9

the equation is solved for q, where εs
I is the inelastic strain at saturation. If the inelastic strain at saturation is found

to vary with strain rate, the parameter q is computed at each strain rate and regression techniques are utilized to
determine an expression for the variation of q.

Next, the material constant β in equation (4) is characterized. Since only uniaxial data were available for the
polymers which were considered in this study, the value of the parameter β has been determined empirically by fit-
ting data from composites with shear dominated fiber orientation angles, such as [±45°]s. To define the constant
based on polymer data alone, a combination of tensile, torsion, and combined tension/torsion tests would be
required.

Further information on the determination of the material constants can be found in Stouffer and Dame (ref. 11)
and Goldberg (ref. 1).
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Composite Micromechanics Model Overview

Micromechanics techniques are used to predict the effective properties and deformation response of the indi-
vidual plies in a composite laminate. Laminate theory is then used to compute the effective deformation response of
the entire composite. In the micromechanics, the effective properties and response are computed based on the prop-
erties of the individual constituents. The unit cell, the smallest material unit for which the response can be consid-
ered to be representative of the entire composite ply, is defined to consist of a single fiber and its surrounding
matrix. Due to symmetry, only one-quarter of the unit cell needs to be analyzed.

As mentioned earlier, in the micromechanics methods used in references 1 and 2, the portion of the unit cell that
was analyzed was divided into four rectangular subcells, one for the fiber and three matrix subcells. The area of the
fiber subcell was set equal to one-fourth of the total fiber area. The relationship between the cross-section of a com-
posite ply in the material axis system, the unit cell, and the portion of the unit cell that was analyzed in the original
micromechanics is shown in figure 1.

To compute the local and effective stresses in the unit cell, the total strains applied to the unit cell and the
inelastic strains in each subcell were assumed to be known. Assumptions of uniform stress and uniform strain were
then applied to the unit cell. For example, along the fiber direction, the strains in each subcell were assumed to be
uniform, and the stresses combined using volume and stiffness averaging. Transverse to the fiber direction in the
plane of the composite, the stresses in each row of the subcells of the unit cell were assumed to be uniform, and the
strains in each row were combined using volume averaging. Likewise, between rows the strains were assumed to be
uniform, and the stresses combined using volume averaging. Similar assumptions were applied for in-plane shear
loading. By combining these assumptions with the constitutive equations for the fiber and matrix, a system of six
coupled simultaneous equations resulted which was solved for the stresses in each subcell. The full set of equations
is presented in references 1 and 2.

REVISED MICROMECHANICS MODEL

Overview

In order to obtain more accurate numerical results, the ability to refine the unit cell to allow for a larger
number of subcells is desirable. However, by applying the approach used previously, solving a large number of
simultaneous equations would be required to obtain the subcell stresses. The number of simultaneous equations
would increase as the number of subcells increased.

However, if one considers the combination of laminate theory with the micromechanics, one can observe that in
classical laminate theory the unit cell is assumed to be in a global state of plane stress (since each ply must be in a
state of plane stress). By assuming that each column of subcells in the original micromechanics model has uniform
stresses, one can conclude that each row of the unit cell must also be in a state of plane stress. While the out-of-
plane normal stresses in each subcell might be nonzero, when combined by volume averaging the total out-of-plane
normal stress in each row must be zero. If one defines each row of the unit cell to be a slice, with this assumption,
the behavior of each slice of the unit cell model can be decoupled. By applying uniform stress and uniform strain
assumptions to each slice of the unit cell model, subslice (subcells within a particular slice) and effective stresses for
each slice can be obtained. The results for each slice of the model could then be combined to obtain the effective
stresses for the entire unit cell. The significance of this approach is that the subslice stresses for each row can be
determined independently, allowing for a significant reduction in the number of simultaneous equations that need to
be solved. Furthermore, no matter how many slices are included in the model, the size of the system of equations for
each slice remains constant. Therefore, instead of solving one large set of simultaneous equations, multiple small
sets of equations can be solved, which is much more computationally efficient.

As discussed earlier, Mital, Murthy and Chamis (ref. 10) applied exactly this approach to the analysis of
ceramic matrix composites. They divided up the unit cell into an arbitrary number of horizontal rectangular slices.
The effective elastic constants and microstresses were computed for each slice, and then laminate theory was applied
to obtain the effective elastic constants for the entire unit cell. A similar approach will be applied for this work. The
major difference is that in reference 10 a simplified mechanics of materials approach was applied within each slice
to obtain the elastic constants and microstresses. As a result, Poisson effects were only applied indirectly, and the
deformation was assumed to be linear elastic. In the current work inelastic strains are included. Additionally, by
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using uniform stress and uniform strain assumptions similar to those used in references 1 and 2 within each slice,
Poisson effects are fully included. As compared to reference 10, a slightly different algorithm is applied to determine
the geometry of each slice. In the slicing algorithm presented here, an interface between the fiber and matrix is not
included. Furthermore, a different methodology from that used in reference 10 is used to ensure that the total area of
the fiber in the slices equals the actual area of the circular fiber.

For this study, the composites are assumed to have a periodic, square fiber packing and a perfect interfacial
bond.  Small strain conditions are assumed, and temperature effects are neglected. The fibers are assumed to be
transversely isotropic and linearly elastic. The fibers are also assumed to have a circular cross-section. The matrix is
assumed to be isotropic, with a rate dependent, nonlinear deformation response computed using the constitutive
equations described in the previous section.

The general procedure in conducting an analysis using this methodology is as follows, which is summarized in
figure 2. The strains applied to the composite laminate are assumed to be known, along with the inelastic strains in
each subslice. The in-plane strains in each ply in the structural (laminate) axis system are assumed to be equal to the
composite strains by the assumptions of laminate theory. The lamina (ply) strains are then transformed into the
material axis system for the ply. A schematic demonstrating the difference between the material axis system and the
structural axis system is shown in figure 3. In the figure, a ply at an arbitrary fiber orientation angle θ is shown. The
material axis system “1-2” is displayed, where the “1” direction is along the fibers. The global “X-Y” structural axis
system is also displayed. All of the plies in the laminate are oriented at various angles related to the structural axis
system.

The in-plane strains in each slice are assumed to be equal to the lamina strains in the material axis system.
Given the total strains in each slice and the inelastic strains in each subslice, the stresses in each subslice are com-
puted.  Once the stresses in each subslice are determined, the effective stresses and effective inelastic strains for the
slice are computed. With this information, the effective stresses and inelastic strains for the lamina can be deter-
mined using laminate theory. By once again applying laminate theory, the effective force resultants and force result-
ants due to inelastic strains can be calculated for the laminate. The details of all of the steps of this procedure will be
described in the following sections.

Slicing Algorithm

In the revised micromechanics the unit cell is divided up into several rectangular horizontal slices. The portion
of the unit cell that contains fiber and matrix is divided up into an odd number of slices of equal thickness. The
remaining matrix areas on the top and bottom of the unit cell are contained in individual slices (fig. 4). In figure 4, as
an example the unit cell is divided up into five (5) fiber slices, and the portion of the unit cell which is analyzed
(analysis cell) is divided up into three (3) fiber slices. As mentioned before, only one-quarter of the unit cell needs to
be analyzed due to symmetry considerations. Figure 5 shows the analysis cell geometry in greater detail for an
example of three fiber slices through the thickness and specifies the x-y coordinate system used in the slicing algo-
rithm. Note that this “x-y” coordinate system is not the structural axis system described in the previous section, but
is more closely related to the material axis system. However, to simplify the notation, in this section only the coordi-
nate system axes are labeled “x” and “y”. For the purposes of this algorithm, the unit cell is assumed to measure one
unit in length by one unit in height, and the analysis cell is assumed to measure 0.5 units in length by 0.5 units in
height.

The number of slices for the fiber in the entire unit cell (Ndiv) is related to the number of fiber slices in the
analysis cell (Nf) through the following relationship

N Ndiv f= −2 1 10( )

where in figures 4 and 5 Ndiv equals five (5) and Nf equals three (3). Note that as shown in the figures, in the analysis
cell the bottom slice has a thickness equal to half that of the other fiber slices due to symmetry considerations.

The diameter of the fiber (df) is related to the fiber volume fraction of the overall composite (Vf) through the
following relationship

d
V

f
f=

4
11

π
( )



NASA/TM—2001-210822      8

and the thickness of each fiber slice in the entire unit cell (tf) is equal to the fiber diameter (df) divided by the num-
ber of fiber slices in the entire unit cell (Ndiv).

To determine the location of the top of the “i”th slice in the y-coordinate direction (yi) in the analysis cell, the
following procedure is used. For the top fiber slice, the value of yi is set equal to the fiber radius. For the remaining
slices, the y-coordinate of the top of the slice is computed using the following expression

y i ti f= −





1

2
12( )

where the 1/2 term results from the fact that the bottom slice in the analysis cell is one-half as thick as the remaining
fiber slices.

The next step is to compute the fiber volume ratio and the thickness ratio (the ratio of slice thickness to total
analysis cell thickness) for each slice. An important goal in computing the fiber volume fraction of each slice is to
ensure that the total fiber area in the analysis cell is equal to one-fourth of the area of the actual fiber (assuming the
actual fiber has a circular shape). As part of this process, the actual circular cross-section of the fiber has to be con-
verted into a set of rectangular cross-sections. Furthermore, each rectangular cross-section must have the same area
as the equivalent curvilinear cross-section.

To carry out this process, the following procedure is followed. First, note that for a circular fiber the x-
coordinate of any point on the outer circumference of the actual fiber can be computed using the standard geometric
definition of the radius of a circle and applying equation (11)

x
V

yf= −
π

2 13( )

where the x-coordinate varies continuously along the circumference of the fiber. Given the y-coordinates of the top
and bottom of each slice, the area of the portion of the fiber contained within each slice (Af

i) can be computed by
using the standard calculus procedures for computing the area under a curve. Since the x-coordinate varies continu-
ously within each slice, the area of the fiber contained within each slice can be obtained by integrating the equation
for the x-coordinate (eq. (13)) between the y coordinates of the top and bottom of slice “i”
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By carrying out the integration, the following expression results
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where the value computed at yi-1 is subtracted from the value computed at yi. For the bottom slice, yi-1 is equal to
zero. By computing the fiber area in each slice in this manner, the total fiber area in the analysis cell is kept equal to
one-quarter of the area of the actual circular fiber. The width of the rectangular fiber subslice can be computed by
dividing the fiber area within the slice by the slice thickness.

The fiber volume fraction of each slice composed of fiber and matrix is equal to the fiber area in each slice
divided by the slice area (the slice thickness multiplied by 0.5, the assumed width of the total slice). The thickness
ratio for each slice (the ratio of the slice thickness to the total slice thickness) composed of both fiber and matrix (hf

i)
is equal to the slice thickness divided by 0.5, the assumed total height of the analysis cell. The fiber volume fraction
of the top slice consisting of matrix only is set equal to zero. The thickness ratio of the top slice is equal to one
minus the sum of the thickness ratio of the remaining slices.
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Slice Micromechanics Equations

Each slice of the analysis cell shown in figures 4 and 5 is analyzed separately. The responses of each slice are
then combined using laminate theory to obtain the effective response of the corresponding lamina. As mentioned
previously, the advantage of this type of approach is that in analyzing a unit cell with a relatively large number of
slices, multiple sets of four simultaneous equations can be solved instead of one large set of equations. Details and
coordinate systems used for the slice analysis are shown in figure 6. Most of the slices are assumed to have two
subslices, one subslice composed of fiber material and one subslice composed of matrix material. The top slice is
assumed to be composed of matrix material only. The micromechanics equations presented here are for those slices
composed of both fiber and matrix material. The stresses in the slices composed of pure matrix can be computed
using the matrix elastic properties and inelastic constitutive equations. The fibers are assumed to be transversely
isotropic and linearly elastic, and the matrix is assumed to be isotropic, with a rate dependent, nonlinear deformation
response computed using the constitutive equations described earlier.

The transversely isotropic compliance matrix is used to relate the local strains to the local stresses in the fiber
and matrix using the following relations
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where all of the stresses and strains are assigned in a Cartesian frame of reference. Note that engineering shear
strains are used in the analysis. A superscript “I” is used to denote inelastic strains. In these equations Sij represents
the components of the compliance matrix, not the components of the deviatoric stress tensor sij as in the discussion
of the constitutive equations. Transverse shear stresses are neglected in the current analysis. However, since these
stresses might turn out to be significant in impact problems, they might be included in the future using methods
similar to those discussed here. Out-of-plane normal stresses are included in the analysis since even though each
slice is assumed to be in a state of global plane stress, the individual subslices of each slice are assumed to be a full
three-dimensional state of stress.

The addition of the inelastic strain components to the standard transversely isotropic elastic constitutive law
allows the incorporation of inelasticity into the constitutive relations. For the fiber, which is assumed to be linear
elastic, these components are neglected. For the matrix material, which is assumed to be isotropic, S23 is set equal to
S12 and S22 is set equal to S11.

In the equations that follow, the subscript “f” will be used to denote fiber related properties, and the subscript
“m” will be used to denote matrix related properties. Stresses and strains with no subscript will be used to represent
effective stresses and strains for the slice (not the composite ply or laminate). The symbol “Vf” will be used in this
section to represent the fiber volume ratio for the slice, computed using the methods discussed earlier, not the total
fiber volume fraction for the composite.

Along the fiber direction (direction 1 in fig. 6), the strains are assumed to be uniform in each subslice, and the
stresses are combined using volume averaging. The in-plane transverse normal stresses (2 direction) and the in-plane
shear stresses (1-2 direction) are assumed to be uniform in each subslice, and the strains are combined using volume
averaging. The out-of-plane strains (3 direction) are assumed to be uniform in each subslice. The volume average
of the out-of-plane stresses in each subslice is assumed to be equal to zero, enforcing a plane stress condition on the
global level for the slice. These assumptions can be expressed using the following equations, which can be derived
using the slice geometry shown in figure 6, the definition of the slice fiber volume ratio and the basic definitions of
displacement and force equilibrium

ε ε ε11 11 11 18f m= = ( )

ε ε ε22 22 221 19= + −V Vf f f m( ) ( )
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ε ε ε33 33 33 20f m= = ( )

γ γ γ12 12 121 21= + −V Vf f f m( ) ( )

σ σ σ11 11 111 22= + −( )V Vf f f m ( )

σ σ σ22 22 22 23= =f m ( )

σ σ σ33 33 330 1 24= = + −( )V Vf f f m ( )

σ σ σ12 12 12 25= =f m ( )

where the stresses and strains are for the slice only, not for the composite ply or for the laminate as a whole. These
assumptions can be (and were in references 1 and 2) applied to the entire unit cell, but for this work are only applied
to each slice.

By combining the uniform stress and uniform strain assumptions (eqs. (18) to (25)) with the constituent stress-
strain relations (eqs. (16) and (17)), the following system of equations results
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that can be solved for the unknown stresses in the subslices. Note that σ22 and σ12 in the subslices are equal to the
equivalent slice stresses due to the uniform stress assumptions. The total strains and subslice inelastic strains are
considered to be the known values in solving this problem. These equations correspond to block five (5) in the
analysis process (fig. 2), where the subslice stresses are computed knowing the slice strains and subslice inelastic
strains.

By substituting the subslice stresses back into equations (22) to (25), an expression relating the effective
stresses to the effective strains in the slice is obtained
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where [Qij] represents the effective plane stress stiffness matrix for the slice and {ei} represents the collected inelas-
tic strain terms resulting from the calculations. This equation is important in two respects. First, through the process
of obtaining this equation the effective elastic constants for the slice are computed (the [Qij] effective plane stress
stiffness matrix). Second, this equation represents the first task in block six (6) in the analysis process (fig. 2), com-
puting the effective stresses in the slice given the subslice stresses. Note that due to uniform stress assumptions, only
σ11 for the slice is computed in the algorithm using this expression, since the other slice stresses were computed
earlier. To complete the second task in block six (6), the computation of the effective inelastic strains in the slice, the
{ei} vector is brought to the left hand side of equation (30) and the expression is again inverted. By comparing the
result to the transversely isotropic constitutive relation for the slice (similar to eqs. (16) and (17) for the fiber and
matrix), the effective inelastic strains for the slice can be computed using the following expression
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where [Sij] is the effective compliance matrix for the slice, and {εΙij} represents the effective inelastic strain vector
for the slice.
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Lamina Effective Stiffness Matrix and Effective Inelastic Strains

To compute the effective stiffness matrix and effective inelastic strains for the lamina (which is equivalent to
the equivalent properties for the analysis cell) from the effective stiffness matrix and inelastic strains for each slice,
the following procedure is used. First, the in-plane strains for each slice are assumed to be constant and equal to the
in-plane strains for the lamina. The total in-plane stresses for the lamina are assumed to be equal to the volume aver-
age of the in-plane stresses for each slice, as follows
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where Nf is the number of fiber slices in the analysis cell, {σij}l are the effective stresses in the lamina, hf
i represents

the thickness ratio of each slice as defined earlier, and the summation is over all of the slices (i).  This step also
accomplishes the first goal of block seven (7) in the analysis process (fig. 2), computing the effective lamina stresses
given the effective stresses in each slice.

To compute the plane stress stiffness matrix and effective inelastic strains for the lamina, equation (30) for the
slice is rewritten as
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where equation (31) is applied to compute the {εΙij} vector from the {ei} vector. By substituting equation (33) into
equation (32), the effective plane stress stiffness matrix for the lamina [Qjk]l, required for future steps in the analysis,
is obtained as follows

[ ] [ ] ( )Q Q hjk l jk i f
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34

where the summation is again over all of the slices. Likewise, by following the same procedures used to go from
equation (30) to equation (31), the following expression is obtained for computing the effective inelastic strains for
the lamina
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where {εΙij}l is the effective inelastic strain vector for the lamina and [Sij]l is the effective compliance matrix for the
lamina. The computing of the effective inelastic strains for the lamina also represents the second task of block seven
(7) of the analysis process (fig. 2).

Basic Equations of Laminate Theory

To allow for the analysis of multilayered laminates, where each ply can have a unique fiber orientation, the
micromechanics method described above is combined with classical lamination theory (ref. 19). As will be
described below, the force resultants due to inelastic strains are computed in a manner similar to that used to deter-
mine thermal and moisture resultants in the classical theory. As has been the case throughout this report, small strain
conditions are assumed, and thermal and moisture effects are neglected. The composites are assumed to be thin
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laminates under plane stress and the effective out-of-plane stresses for each ply are assumed to be zero. Only sym-
metric laminates under in-plane loading conditions with no bending effects are analyzed. In the future, the ability to
analyze unsymmetric laminates will be added to the theory. Furthermore, since in the analysis of impact problems
the effects of transverse shear stresses could be significant, the ability to account for these stresses will be added to
the laminate theory in the future.

In the laminate theory for symmetric laminates, the total laminate force resultants {Ni} are related to the mid-
plane laminate strains {εo

i} and the laminate force resultants due to inelastic strains {NI
i} by the following

expression
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where the stresses and strains are in the structural (laminate) axis system and [Aij] represents the effective in-plane
stiffness matrix for the laminate. The laminate stiffness matrix is computed using the stiffness matrices for each ply
using standard laminate theory procedures (refs. 2 and 19). The subscripts “x” and “y” represent normal quantities in
the structural axis system and the subscript “s” represents in-plane shear quantities in the structural axis system.
Recall that figure 3 shows the relationship between the structural axis system and the material axis system. As
before, note that engineering shear strains are used in the analytical development. Equation (36) is also used to carry
out block eight (8) of the analysis process (fig. (2)), the computation of effective force resultants for the laminate.

The following summation over all of the plies is used to compute the terms in the force resultants due to inelas-
tic strains {NI

i}
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where [ Qij ] represents the plane stress stiffness matrix [Qij]l transformed into the structural axis system for ply k,
{εΙi} represents the effective inelastic strain vector in the structural axis system for ply k, Nl represents the total num-
ber of plies in the laminate and hk represents the thickness of each ply. The plane stress stiffness matrix for each ply
is transformed from the material axis system to the structural axis system using standard laminate theory procedures
(refs. 2 and 19). The computation of the force resultants due to inelastic strains for the laminate is part of block eight
(8) of the analysis process (fig. 2).

NUMERICAL IMPLEMENTATION OF ANALYTICAL MODEL

To verify the analytical model, a stand-alone computer code has been developed. A standard fourth order
Runge-Kutta explicit integration routine is used to integrate the rate equations in the polymer constitutive model
(ref. 20).  For this class of equations, implicit integration routines have often been used because of their inherent
numerical stability (ref. 11). However, in this case, to facilitate the implementation of these equations into a transient
dynamic finite element code, explicit methods have been used. The Runge-Kutta method has been used due to its
simplicity and ease of implementation. However, in the future more sophisticated integration algorithms may be
used.

To compute the value of a set of variables pn at time step t + ∆t, where t is the current time and  ∆t is the time
increment, the following equations are used

p t t p t k k k kn n( ) ( ) ( )+ = + + + +( )∆ 1

6
2 2 381 2 3 4

k p t p tn n1 39= ( )˙ , ( )∆
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k p t t p k tn n2 1
1
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40= + +





˙ , ( )∆ ∆

k p t t p k tn n3 2
1

2

1

2
41= + +





˙ , ( )∆ ∆

k p t t p k tn n4 3 42= + +( )˙ , ( )∆ ∆

where ṗn  is the time derivative of variable pn.
In the stand-alone computer code, first the geometric data and material properties are read in from an input file.

Next, the loading information is input. Both stress and strain controlled loading is permitted. The slice geometry is
computed using the procedures described earlier (eqs. (10) to (15)). The elastic properties for each slice and for the
lamina are determined next (eqs. (30) and (34), respectively). From this information, the laminate stiffness matrix is
computed (based on eq. (36)).

For each load step, the total strain rates or stress rates in the loading directions are calculated. The Runge-Kutta
integration routine is then carried out to determine the inelastic strains and internal stresses in each subslice in the
laminate, as well as the midplane strains and force resultants due to inelastic strains for the laminate. The procedure
for the Runge-Kutta integration is described below and is carried out four times for each time step as indicated by
equations (38) to (42). The total force resultants for the laminate are computed using equation (36). If the laminate is
assigned a total thickness of one (1), the force resultants are equal to the stresses. Appropriate values are written to
an output file, and the code proceeds to the next time step.

Within the Runge-Kutta integration routine, the strains in each lamina are converted into the material axis sys-
tem. Within each ply, the stresses in the subslices of each slice are computed (eqs. (26) to (29)). At this point, the
polymer constitutive equations (eqs. (1) to (4)) are applied to calculate the inelastic strain rate and internal stress rate
for each matrix subslice. Next, the effective inelastic strain rate for each ply is computed in the material axis system
(using rate forms of eqs. (31) and (35)) and converted to the structural axis system.

The next step in the Runge-Kutta routine is to compute the laminate force resultant rate due to inelastic strains
for the laminate (eq. (37) in rate form). From this information, the laminate strain rate in each coordinate direction is
determined. This procedure varies depending on whether the loading is strain controlled or stress controlled. For
strain controlled loading, a partial inversion of the rate form of equation (36) is carried out, while for stress con-
trolled loading a full inversion of the rate form of equation (36) is required.

MODEL VALIDATION

To verify the micromechanics equations, a series of analyses have been carried out using two polymer matrix
composite systems. Both material systems exhibit a strain rate dependent, nonlinear deformation response.

Material Properties

The first material examined, supplied by Fiberite, Inc., consists of carbon IM7 fibers in a 977–2 toughened
epoxy matrix. Tensile tests have been conducted on the neat resin and composite laminates with fiber orientations of
[45°], [90°], and [±45°]s. Tensile tests were conducted at Ohio State University. Tests were conducted at strain rates
of about 5×10–5/sec and about 1.0/sec. Dog-bone shaped specimens were used with a gage length of approximately
0.9525 cm. The testing was conducted using an Instron hydraulic testing machine. Further details of the test speci-
mens and testing procedures will be described in a future report (ref. 21), along with a discussion of high strain rate
tests that were conducted.

The IM7/977–2 composite has a fiber volume ratio of 0.60. The material properties used in this study for the
IM7 fiber are listed in table I. The longitudinal modulus, longitudinal Poisson’s ratio and in-plane shear modulus
are as given in reference 22. The transverse modulus of the fiber was reduced slightly from the value given in
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reference 22 in order to provide a good correlation in the elastic range with the [90°] data. Since the transverse
modulus given in reference 22 was also a correlated value, a variation of this sort was considered acceptable. The
value for the transverse Poisson’s ratio was taken from reference 23 based on representative carbon fiber data.

The material properties for the 977–2 resin were determined using the procedures described earlier in this report
from the experimental uniaxial stress-strain curves shown in figure 7. Note that since this resin did not reach a “satu-
ration” stress before failure, appropriate values were extrapolated from the tensile data and used to obtain the mate-
rial properties. The value for the constant “β“ required for the correction factor given in equation (4) was determined
to be strain rate dependent. In addition, the material constant “q” from equation (3) was found to be rate dependent
for this material. The values of the material constants for the 977–2 resin are given in table II. Stress-strain curves
computed using the material constants given in table II are shown in figure 7 along with the experimental values. As
can be seen in the figure, there is a good correlation between the experimental and computed curves.

The second material system examined consists of carbon AS4 fibers embedded in a PEEK thermoplastic matrix.
Tensile stress strain curves were obtained by Weeks and Sun (ref. 24) for composites with a variety of fiber orienta-
tions and laminate configurations at strain rates of 1×10–5 and 0.1/sec. Only low strain rate composite data were
examined since only low strain rate data were available for the PEEK matrix.
     The fiber volume fraction of the AS4/PEEK composites is 0.62. The elastic properties of the AS4 fibers were
taken from reference 23 and are given in table I. The material properties of the PEEK matrix were determined using
tensile stress-strain curves obtained by Bordonaro (ref. 16) over strain rates ranging from 1×10–6 to 1×10–3/sec.  The
computed constants are shown in table II. Again the value for the constant “β“ required for the correction factor
given in equation (4) was found to be strain rate dependent. The constant “q” for this material is assumed to be rate
independent. In actuality, the value of “q” was found to vary slightly with strain rate, but for the strain rates consid-
ered a constant value of “q” was acceptable. If a wider range of strain rates would be examined (like for the 977–2
resin), most likely the value of “q” for PEEK would also turn out to be rate dependent. Experimental and computed
curves for the PEEK matrix are shown in figure 8. As can be seen in the figure, there is an excellent correlation
between the experimental and computed curves.

Analysis Results

Experimental and computed stress-strain curves for the IM7/977–2 system are shown in figures 9 to 11. Three
fiber slices were used in the analysis cell (Nf  = 3) for the computations. This value was found to yield sufficiently
converged answers. In figure 9, results for the [45°] laminates at strain rates of 4.75×10–5/sec and 1.0/sec are shown.
In figure 10, results for the [90°] laminates at 4.44×10–5/ and 1.06/sec are shown. In figure 11, results for the [±45°]s
laminates at 9×10–5 and 2.0/sec are shown. Note that for the [90°] laminates the experimental results show minimal
rate dependence and the computed results for both strain rates overlap each other. The lack of rate dependence in the
[90°] laminates is most likely due to the specimens failing while the effective stresses in the matrix were still in the
elastic range. The fact that the computed results also predict a mostly linear deformation response seems to support
this hypothesis. As can be seen in figure 7, all of the strain rate dependence in the matrix deformation is in the in-
elastic range of the stress-strain curve. As can be seen in the figures, the rate dependence (or lack thereof as in the
case of the [90°] laminates) and nonlinearity of the experimental stress-strain curves are captured by the analytical
model. Furthermore, the comparison between the experimental and computed results is quite good.

Experimental and computed results for the AS4/PEEK composite are shown in figures 12 to 14. Three fiber
slices were again used in the analysis cell (Nf  = 3) for the computations. In figure 12, results for the [45°] laminates
at strain rates of 1×10–5 and 0.1/sec are shown. In figure 13, results for the [90°] laminates at 1×10–5 and 0.1/sec are
shown. In figure 14, results for the [±45°]s laminates at 1×10–5 and 1.0/sec are shown. Note that for the [90°] lami-
nates the experimental and computed results are once again strain rate independent, for the reasons discussed earlier.
Another interesting point to note is that the failure strain for the [90°] laminates is relatively low.  This result may be
due to a low interface strength in the composite. The rate dependence and nonlinearity of the composite response are
again captured by the analysis. Furthermore, the comparison between the experimental and computed results is again
quite good.

To demonstrate the improvement in results obtained by using the new micromechanical formulation, figures 5
and 7 from reference 2 are reproduced in figures 15 and 16. These figures show results computed using the original
micromechanics methodology, which was described in the Background section. As a reminder, in the original
micromechanics method (fig. 1) the unit cell was divided into four subcells and the slicing technique was not used.
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Figure 15 contains experimental and computed results for the AS4/PEEK [45°] laminates and figure 16 contains
results for the AS4/PEEK [±45°]s laminates described earlier. By comparing figures 15 to 12 and figures 16 to 14,
using the revised micromechanics formulation results in a slight improvement in the quality of the predictions (com-
pared to the experimental results) in the elastic range, and a significant improvement in the quality of the predictions
in the inelastic range of the deformation. Furthermore, using a more refined unit cell did not significantly decrease
the computational efficiency.

CONCLUSIONS

In this study, a previously developed micromechanics method has been revised in order to more accurately pre-
dict the nonlinear, strain rate dependent deformation response of polymer matrix composites composed of ductile
matrix materials. In the revised micromechanics model, the unit cell is divided up into several slices, and micro-
mechanics equations are then developed for each slice. The results from each slice are then combined using laminate
theory to obtain the effective elastic properties, stresses, and inelastic strains for the unit cell. Laminate theory can
be applied again to obtain the deformation response for a multilayered laminate. Tensile stress-strain curves have
been computed for two representative polymer matrix composites for several laminate configurations and strain
rates, and the results compared well to experimentally obtained values. Furthermore, results computed using the
revised approach compared better to experimentally obtained values than results computed using the original micro-
mechanics approach without a decrease in computational efficiency. Therefore, the revised micromechanics
approach appears to be more advantageous to use.

Future efforts will include expanding the laminate theory formulations to account for unsymmetric laminates
and laminates subject to bending loads. The ability to account for thermal effects will also be added to the micro-
mechanics and laminate theory. The characterization of high strain rate tests on the IM7/977–2 system will be com-
pleted and documented. Failure theories will be added to the analytical model, and the resulting models will be
incorporated within appropriate finite element codes. Furthermore, the analytical methods will be extended to the
analysis of filament wound and woven composites.
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TABLE I.—MATERIAL PROPERTIES FOR IM7 AND AS4 FIBERS
Longitudinal

modulus,
GPa

Transverse
modulus,

GPa

Longitudinal
Poisson’s

ratio

Transverse
Poisson’s

ratio

In-plane shear
modulus,

GPa
IM7 276 12.4 0.25 0.25 20.0
AS4 214 14.0 0.20 0.25 28.0

TABLE II.—MATERIAL PROPERTIES FOR FIBERITE 977–2

(STRAIN RATES OF 5¥10–5 AND 1/sec) AND PEEK (STRAIN

RATES OF 1¥10–5 AND 0.1/sec). FOR RATE DEPENDENT

PROPERTIES, TOP CELL EQUALS VALUE AT LOWER

STRAIN RATE, BOTTOM CELL EQUALS VALUE AT

HIGHER STRAIN RATE

E,

GPa

n Do,

1/sec

N Zo,

MPa

Q Wm,

MPa

b

  85 1.05977–2 3.52 0.40 1E+06 0.42 2180
160

76
0.90
0.40PEEK 4.00 0.40 1E+04 0.70 630 310 52
0.30
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Figure 1.—Schematic showing relationship between composite ply, 
   unit cell and portion of unit cell which is analyzed for original 
   micromechanics model.
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for slice (Equations (30) and (31))
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and force resultants due to 
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(Equations (36) and (37))
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Figure 2.—Flowchart showing analysis process for revised micromechanics model.
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Figure 3.—Schematic showing global laminate structural axis 
   system (X-Y axes), local material axis system (1-2 axes) and
   fiber orientation angle � for a composite ply.
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Figure 4.—Schematic showing relationship between unit cell, portion
   of unit cell which is analyzed and slices for revised micromechanics.
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Figure 5.—Schematic showing analysis cell geometry
   and layout including slices for revised micromechanics
   model.
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Figure 6.—Schematic showing slice geometry and layout for 
   revised micromechanics model.
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Figure 7.—Experimental and computed results for 977-2 resin at
   strain rates of 5.7x10–5/sec and 1.31/sec.
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Figure 8.—Experimental and computed results for PEEK at strain
   rates of 1x10–6/sec and 1x10–3/sec.
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Figure 9.—Experimental and computed results for IM7/977-2 [45°]
   laminates at strain rates of 4.75x10–5/sec and 1.0/sec.
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Figure 10.—Experimental and computed results for IM7/977-2
   [90°] laminates at strain rates of 4.44x10–5/sec and 1.06/sec.
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Figure 11.—Experimental and computed results for IM7/977-2 
   [±45°]s laminates at strain rates of 9x10–5/sec and 2.0/sec.
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Figure 12.—Experimental and computed results for AS4/PEEK
   [45°] laminates at strain rates of 1x10–5/sec and 0.1/sec.
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Figure 13.—Experimental and computed results for AS4/PEEK 
   [90°] laminates at strain rates of 1x10–5/sec and 0.1/sec.
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Figure 14.—Experimental and computed results for AS4/PEEK 
   [±45°]s laminates at strain rates of 1x10–5/sec and 0.1/sec.
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Figure 15.—Experimental values for AS4/PEEK [45°] laminates at 
   strain rates of 1x10–5/sec and 0.1/sec and results computed 
   using original micromechanics model.
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Figure 16.—Experimental values for AS4/PEEK [±45°]s laminates 
   at strain rates of 1x10–5/sec and 0.1/sec and results computed
   using original micromechanics model.
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